Organolithium Chemistry: NMR-Based Distinction of Cyclic Dimers from Cyclic Trimers by ⁶Li{¹³C}-HMQC-TOCSY

Walter Bauer*

Contribution from the Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received December 22, 1995[⊗]

Abstract: Isotopically ⁶Li-labeled lithioorganic cyclic dimers may not be distinguished from cyclic trimers or higher oligomers by conventional ¹³C-NMR spectroscopy: both a cyclic dimer and a trimer will exhibit a quintet due to coupling of ¹³C with two neighboring ⁶Li nuclei. However, a clear distinction can be made by means of a 2D ⁶Li{¹³C}-HMQC-TOCSY experiment without ¹³C decoupling during the acquisition period: in a ¹³C isotopomer, the existence of two chemically equivalent (dimer) or nonequivalent (trimer) Li nucleus sites gives rise to specific cross peak patterns. The distinction is based on ¹³C,⁶Li magnetization transfer and subsequent homonuclear magnetization transfer between appropriate ⁶Li spins. Thus, a dimer reveals a pair of cross peaks located at the chemical shift of the ¹³C satellites in the f₂ (⁶Li) domain, whereas a trimer leads to an extra cross peak at the chemical shift of the ⁶Li main signal. The usage of the novel method is exemplified for a lithioorganic trimer and a dimer model compound.

Introduction

The aggregate size of an organolithium compound in solution may often be deduced from NMR line multiplicities due to ¹³C,^{6,7}Li coupling.¹ The pioneering work of Fraenkel,² introducing ⁶Li isotopic labeling, was followed by a variety of applications.³ Due to the favorable properties of the ⁶Li isotope (spin I = 1; very small quadrupole moment), the ⁶Li-labeling technique is now common routine.⁴ Provided that intermolecular chemical exchange is slow with respect to the involved

(1) (a) McKeever, L. D.; Waack, R. Chem. Commun. 1969, 750. (b) McKeever, L. D. In Ions and Ion Pairs in Organic Reactions; Szwarc, M., Ed.; Interscience Publishers: New York, 1972; p 263 f. (c) Brown, T. L. Pure Appl. Chem. 1970, 23, 447. (d) Günther, H.; Moskau, D.; Schmalz, D. Angew. Chem. 1987, 99, 1242; Angew. Chem., Int. Ed. Engl. 1987, 26, 1212. (e) Thomas, R. In Isotopes in the Physical and Biomedical Sciences; Buncel, E., Jones, J. R., Eds.; Elsevier: Amsterdam, 1992; p 367 f. (f) Bauer, W.; Schleyer, P. v. R. In Advances in Carbanion Chemistry; Snieckus, V., Ed.; Jai Press: Greenwich CT, 1992; Vol. 1, p 89 f. (g) Günther, H. Encyclopedia of NMR; Wiley: New York, 1996; Vol. 5, p 28@2)f(a) Fraenkel, G.; Fraenkel, A. M.; Geckle, M. J.; Schloss, F. J. Am. Chem. Soc. 1979, 101, 4745. (b) Fraenkel, G.; Henrichs, M.; Hewitt, J. M.; Su, B. M.; Geckle, M. J. J. Am. Chem. Soc. 1980, 102, 3345. (c) Fraenkel, G.; Hsu, H.; Su, B. M. In Lithium: Current Applications in Science, Medicine, and Technology; Bach, R. O., Ed.; J. Wiley: New York, 1985; p 273 f.

(3) (a) Siegel, H.; Hiltbrunner, K.; Seebach, D. Angew. Chem. 1979, 91, 845; Angew. Chem., Int. Ed. Engl. 1979, 18, 785. (b) Seebach, D.; Siegel, H.; Gabriel, J.; Hässig, R. Helv. Chim. Acta 1980, 63, 2046. (c) Seebach, D.; Hässig, R.; Gabriel, J. Helv. Chim. Acta 1983, 66, 308. (d) Hässig, R.; Seebach, D. Helv. Chim. Acta 1983, 66, 2269. (e) Seebach, D.; Gabriel, J.; Hässig, R. Helv. Chim. Acta 1984, 67, 1083. (f) Heinzer, J.; Oth, J. F. M.; Seebach, D. Helv. Chim. Acta 1985, 68, 1848. (g) Thomas, R. D.; Jensen, R. M.; Young, T. C. Organometallics **1987**, 6, 565. (h) Thomas, R. D.; Ellington, D. H. Magn. Reson. Chem. **1989**, 27, 628. (i) Bates, T. F.; Thomas, R. D. J. Organomet. Chem. 1989, 359, 285. (j) Bauer, W.; Winchester, W. R.; Schleyer, P. v. R. Organometallics 1987, 6, 2371. (k) Bauer, W.; Klusener, P. A. A.; Harder, S.; Kanters, J. A.; Duisenberg, A. J. M.; Brandsma, L.; Schleyer, P. v. R. Organometallics 1988, 7, 552. (1) Harder, S.; Boersma, J.; Brandsma, L.; Kanters, J. A.; Bauer, W.; Pi, R.; Schleyer, P. v. R.; Schöllhorn, H.; Thewalt, U. Organometallics 1989, 8, 1688. (m) Bauer, W.; Griesinger, C. J. Am. Chem. Soc. 1993, 115, 10871. (n) Moskau, D.; Brauers, F.; Günther, H.; Maercker, A. J. Am. Chem. Soc. 1987, 109, 5532. (o) Gais, H.-J.; Vollhardt, J.; Günther, H.; Moskau, D.; Lindner, H. J.; Braun, S. J. Am. Chem. Soc. 1988, 110, 978. (p) Eppers, O.; Günther, H. Tetrahedron Lett. 1989, 30, 6155.

coupling constants, ¹³C,⁶Li coupling patterns observed in ¹³C-NMR spectra usually allow the identification of aggregate sizes: a 1:1:1 triplet for a monomer, a 1:2:3:2:1 quintet for a dimer, and a 1:2:3:4:3:2:1 septet for a tetramer. However, ambiguous situations may be found. Consider the cores of a cyclic dimer, **1**, and a cyclic trimer, **2**.

In the ¹³C-NMR spectrum, both **1** and **2** would reveal a quintet due to coupling of ¹³C with two neighboring ⁶Li nuclei. Hence, simple 1D ¹³C-NMR spectra may not be employed in order to distinguish between **1** and **2**. For a related case, Gilchrist and Collum⁵ developed a very clever NMR method which allows discrimination between a ¹⁵N-labeled cyclic lithioamide dimer, **3**, and a higher oligomer, presumably cyclic trimer **4**.

Whereas zero quantum coherence between ¹⁵N and ⁶Li may evolve in the case of trimer **4**, this is not possible for dimer **3**. Consequently, in appropriate 2D NMR spectra **3** and **4** reveal different typical cross peak patterns. However, the application of this method to "true" organolithium compounds (i.e., Cmetalated species) is largely prohibited due to preparative difficulties in ¹³C-labeling at specific molecular sites. With natural abundance ¹³C (1.1%) the latter method would not work.

^{*} Phone: +49-9131-852987. FAX: +49-9131-859132. E-mail: bauer@ organik.uni-erlangen.de.

[®] Abstract published in Advance ACS Abstracts, May 15, 1996.

⁽⁴⁾ In the following text we will refer to ⁶Li-labeled compounds unless otherwise noted.

^{(5) (}a) Gilchrist, J. H.; Collum, D. B. J. Am. Chem. Soc. 1992, 114, 794. (b) Collum, D. B. Acc. Chem. Res. 1993, 26, 227. (c) Romesberg, F. E.; Bernstein, M. P.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J. Am. Chem. Soc. 1993, 115, 3475.

Figure 1. Pulse sequence of ${}^{6}\text{Li}\{{}^{13}\text{C}\}$ -HMQC-TOCSY without ${}^{13}\text{C}$ decoupling during acquisition. Phase cycle: $\phi_1 = x$; $\phi_2 = x$, -x; $\phi_3 = x$; $\phi_4 = x$, x, -x, -x; $\phi_5 = (y)_4$, $(-y)_4$; $\phi_6 = x$, -x, -x, x.

For completeness, it should be noted that classical physicochemical methods for aggregate size determination of organolithium compounds which are based on colligative measurements are known as well. These include, e.g., cryoscopy,⁶ vapor phase osmometry,⁷ differential pressure barometry,⁸ or ebullioscopy.⁹ However, the drawbacks of these methods are the following: (i) The result is just one single number for the degree of aggregation. Hence, noninteger numbers must be interpreted to reflect binary equilibria, which may not necessarily be true. Likewise, artifacts from byproducts or from decomposition may lead to erroneous conclusions. (ii) Colligative methods are limited to the physical properties of the solvent (boiling/freezing point).

In this paper, a novel NMR application is described which makes use of ${}^{6}\text{Li}\{{}^{13}\text{C}\}$ -HMQC-TOCSY to get a quick, easy, and reliable distinction between dimer **1** and trimer **2**. No ${}^{13}\text{C}$ -labeling is required; thus, elaborate synthetic work can be avoided.

Methods

Due to sensitivity reasons, "inverse" (¹H-detected) 2D NMR techniques have become popular in recent years.^{10,11} Though predominantly applied to ¹H and ¹³C, these methods may include other heteronuclei with spin quantum numbers I > 1/2 as well. Consider a ⁶Li-detected ⁶Li{¹³C} heteronuclear multiple quantum coherence¹² (⁶Li{¹³C}-HMQC) experiment. Provided that ¹³C decoupling was applied during the acquisition period, a single cross peak would be obtained in a 2D correlation plot. When ¹³C decoupling during t_2 is omitted, heteronuclear ⁶Li,¹³C coupling will be effective during FID sampling, leading to cross peak splitting in f₂.

The pulse sequence of ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY 14 (TOCSY = total correlation spectroscopy) is depicted in Figure 1. Here, subsequent to the ${}^{6}\text{Li}{}^{13}\text{C}$ magnetization transfer, a suitable mixing sequence (MLEV-

- (7) (a) Brubaker, G. R.; Beak, P. J. Organomet. Chem. 1977, 136, 147.
 (b) West, P.; Waack, R. J. Am. Chem. Soc. 1967, 89, 4395.
- (8) Fraenkel, G.; Beckenbaugh, W. E.; Yang, P. P. J. Am. Chem. Soc. 1976, 98, 6878.
- (9) Rast, K. *Methoden der Organischen Chemie*; Thieme: Stuttgart, Germany, 1955; Houben/Weyl, Vol. III, Part 1, p 327 f.
- (10) Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R. J. Magn. Reson. 1990, 86, 304.

(11) Griesinger, C.; Schwalbe, H.; Schleucher, J.; Sattler, M. In *Two-Dimensional NMR-Spectroscopy. Applications for Chemists and Biochemists*, 2nd ed.; Croasmun, W. R., Carlson, R. M. K., Eds.; VCH: New York, 1994; p 457 f.

(14) (a) Lerner, L.; Bax, A. J. Magn. Reson. 1986, 69, 375. (b) Davis,
 D. G. J. Magn. Reson. 1989, 84, 412.

17¹⁵ or equivalent) leads to homonuclear magnetization transfer from ⁶Li spins coupled to ¹³C to other, ¹²C-bound ⁶Li nuclei. Additional constant low-power ¹H decoupling ensures intensity gain due to the NOE.

The basic idea of the dimer/trimer distinction is as follows. Consider the core of a ¹³C-isotopomeric dimer, **5**: a ⁶Li{¹³C}-HMQC experiment *without* ¹³C decoupling during t_2 will result in a pair of cross peaks located at the ¹³C chemical shift in f₁ and at the chemical shift of the ¹³C satellites of the main ⁶Li resonance line in f₂. Adding an additional mixing sequence (TOCSY, ROESY, NOESY) will not lead to a change of the spectrum. Provided that **5** remains intact with respect to the length of the mixing period (no intermolecular exchange), the two isochronous Li nuclei bonded to the ¹³C isotope still reveal *J* coupling. A different situation is found in the core **6** of a ¹³C-isotopomeric trimer

(or, by analogy, a higher aggregate). Here, chemically nonequivalent lithium sites are present. First, a ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC experiment will reveal a pair of cross peaks in the same way as for **5**. However, an additional ${}^{6}\text{Li},{}^{6}\text{Li}$ mixing sequence will lead to magnetization transfer including the ${}^{6}\text{Li}$ nucleus *remote* from ${}^{13}\text{C}$ (drawn bold in **6**), the resonance line of which is *not* split due to *J* coupling. Hence, a third cross peak additional to the HMQC-generated pair will appear at the ${}^{6}\text{Li}$ chemical shift of an all- ${}^{12}\text{C}$ isotopomer. If Thus, the simple overall rule is as follows: if an organolithium compound shows a quintet for the signal of the metalated ${}^{13}\text{C}$, then perform a ${}^{6}\text{Li}$ -detected ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY spectrum without ${}^{13}\text{C}$ decoupling during t_2 . If only two cross peaks are present, the compound is a cyclic dimer. If three cross peaks appear, it must be a trimer or some other higher aggregated species with an adequate bonding situation.

The experiments described in the following text were performed on a special triple resonance probehead: the inner coil is tunable between the frequencies of ¹⁵N and ³¹P whereas the outer coil is triply tuned to ¹H, ²H, and ¹³C. After optimizing the shim by using the ²H lock signal, experiments which involve ⁶Li spin lock were performed without ²H lock to avoid disturbance of the ²H lock signal. The field stability of modern superconducting magnets usually is sufficient in order to perform the described experiments over a duration of several hours or even several days. Likewise, the employed spectrometer matrix shim stability is excellent, thus making autoshim corrections unnecessary.

Since the ²H channel is not used in the ⁶Li{¹³C}-HMQC-TOCSY experiment, "normal" probeheads for ¹H,¹³C measurements may be employed as well. The Larmor frequencies of ²H and ⁶Li are so close that the lock channel may be used for ⁶Li detection even without detuning the probe channel. Of course, considerably longer ⁶Li pulse widths (up to several hundredths of a microsecond) must be expected in these cases. Moreover, the ²H channel must be capable of withstanding hard ⁶Li pulses and several watts of ⁶Li spin lock for a several seconds interval.

Results

Materials. In order to demonstrate the applicability of the method outlined above to organolithium compounds, we chose 7^{17} as a model of a dimer and 8^{18} as an example of a trimer. Both 7 and 8 were enriched 96% by the ⁶Li isotope. In toluene*d*₈ solution, both 7 and 8 adopt the structures represented by the formulas.

^{(6) (}a) Bauer, W.; Seebach, D. Helv. Chim. Acta **1984**, 67, 1972. (b) Brown, T. L.; Gerteis, R. L.; Bafus, D. A.; Ladd, J. A. J. Am. Chem. Soc. **1964**, 86, 2135.

^{(12) (}a) Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Am. Chem. Soc. **1983**, 105, 7188. (b) Live, D. H.; Davis, D. G.; Agosta, W. C.; Cowburn, D. J. Am. Chem. Soc. **1984**, 106, 6104. (c) Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Magn. Reson. **1983**, 55, 301.

⁽¹³⁾ Neuhaus, D.; Williamson, M. P. The Nuclear Overhauser Effect in Structural and Conformational Analysis; VCH: New York, 1989.

⁽¹⁵⁾ Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.

⁽¹⁶⁾ By rigorous inspection, due to the ¹³C isotope effect the chemical shift of the remote ⁶Li atom drawn bold in **6** is not identical to the ⁶Li chemical shift of an all-¹²C isotopomer. However, this ³J effect is negligible. By contrast, the ¹J ¹³C isotope effect may be observed for the two ⁶Li atoms directly bound to ¹³C; see the text and Figure 4.

⁽¹⁷⁾ Bauer, W.; Feigel, M.; Müller, G.; Schleyer, P. v. R. J. Am. Chem. Soc. 1988, 110, 6033.

⁽¹⁸⁾ Harder, S.; Boersma, J.; Brandsma, L.; Kanters, J. A.; Bauer, W.; Schleyer, P. v. R. *Organometallics* **1989**, *8*, 1696.

Compound **7** is the addition—second metalation product of nBuLi and diphenylacetylene and has been extensively studied by NMR, X-ray analysis, and MNDO calculations.¹⁷ Actually, **7** is *not* a dimer but a monomeric entity instead. However, the bonding situation of the doubly bridging lithium atoms is completely identical to the situation found in a genuine dimer (e.g., phenyllithium—TMEDA¹⁹). Thus, in benzene- d_6 or toluene- d_8 , the lithiated carbon atoms C1 and C8 in **7** exhibit the typical ¹³C quintets due to coupling with two ⁶Li isotopes, $J(^{13}C,^{6}Li) = 5.7$ and 7.5 Hz, respectively. The reason why compound **7** had been chosen as a model dimer is its low reactivity toward the solvent (toluene- d_8) over a long period of orientational NMR experiments. Any other genuine dimeric organolithium compound would principally perform in the very same way.

Compound **8** (monomeric entity: [1,3-bis(dimethylamino)phen-2-yl]lithium) is a genuine trimeric entity in toluene- d_8 which has been studied by X-ray analysis and NMR in Brandsma's and our group.¹⁸ Similar to **7**, **8** is relatively unreactive toward toluene- d_8 .

Dimer Case. Figure 2shows a ⁶Li{¹³C}-HMQC-TOCSY spectrum obtained on model dimer 7 at -40 °C. No ¹³C decoupling was applied during t_2 . The transmitter in f_1 was placed close to the resonance line of C1 ($\delta = 202.0$ ppm). As expected, a pair of cross peaks appears at the ¹³C satellites' chemical shift positions of the ⁶Li main signal in f_2 and at the chemical shift of C1 in f_1 . As expected from the principles outlined in the Methods, no extra cross peak is observed. The resonance line of the second metalated carbon atom, C8 in 7, appears at $\delta = 189.0$ ppm in the 1D ¹³C-NMR spectrum. Obviously due to the relatively long ¹³C 90° pulse width, off resonance effects suppress a folded-in second pair of cross peaks originating from the ¹³C8 satellites. In practice, such folding-in would not cause serious spectral problems. Rather, it might be exploited for additional gain of information.

The length of the mixing period (2 s) has been adjusted with respect to the ⁶Li spin-lattice relaxation time, T_1 , of the all-¹²C isotopomer (ca. 22 s; see below). Increasing the mixing period to 5 s leads to the same result, however, with a lower signal-to-noise ratio. This manifests in increased t_1 noise artifacts at the ⁶Li main signal chemical shift.

In a control experiment, the spectrum of Figure 2 was rerecorded with the temperature raised to -10 °C. Under these conditions, the *inter*molecular lithium exchange rate is considerably higher compared to the conditions of Figure 2. Thus, during the TOCSY mixing period an appreciable amount of ⁶Li spins formerly bound to ¹³C and involved in heteronuclear ⁶Li{¹³C} double quantum coherence transfer exchange their chemical position to an all-¹²C isotopomer. Hence, it should be expected that this population of exchanged ⁶Li spins now gives rise to an additional cross peak at the chemical shift of the ⁶Li main peak. This is experimentally confirmed in Figure 3. As a consequence, when the ⁶Li{¹³C}-HMQC-TOCSY experiment is performed, care must be taken not to introduce artifacts due to chemical exchange phenomena.

Figure 2. ⁶Li{¹³C}-HMQC-TOCSY spectrum of **7** in toluene- d_8 , 0.25 M, -40 °C, experimental time 6.0 h, pulse sequence of Figure 1, mixing time 2 s: horizontal, f_1 (¹³C); vertical, f_2 (⁶Li). The region of metalated carbon C1 was selected in f_1 . No ¹³C decoupling was applied during t_2 . One-dimensional slices have been taken at the top of the f_2 -upfield cross peak. The scale in f_2 does not represent the true chemical shift.

Figure 3. ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY spectrum of **7** in toluene- d_{8} , 0.25 M, $-10 \,{}^{\circ}\text{C}$, experimental time 7.7 h, pulse sequence of Figure 1, mixing time 5 s. The center cross peak arises from artifacts due to intermolecular exchange. For further explanations, see Figure 2.

Trimer Case. Figure 4 shows a ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY spectrum analogous to that in Figure 2, now obtained on trimer **8**. Similar to the results of Figure 2, heteronuclear double quantum coherence manifests in the appearence of a pair of cross peaks at the ${}^{6}\text{Li}$ chemical shifts of the ${}^{13}\text{C}$ satellites.

⁽¹⁹⁾ Thoennes, D.; Weiss, E. Chem. Ber. 1978, 111, 3157.

Figure 4. ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY spectrum of **8** in toluene- d_8 , 0.25 M, 24 °C, experimental time 10.2 h, pulse sequence of Figure 1, mixing time 10 s. The center cross peak identifies the trimeric nature of **8**. For further explanations, see Figure 2.

During the mixing period magnetization is transferred from the ⁶Li spins involved in heteronuclear ⁶Li{¹³C} double quantum coherence (the Li positions adjacent to ¹³C in **6**) to the remote Li position (bold in **6**). This leads to a third cross peak at the chemical shift of the main ⁶Li resonance line of an all-¹²C isotopomer. Note that this additional cross peak is not located exactly midway between the two outer ones: due to the ¹³C isotope effect exerted on ⁶Li, the ¹³C satellites appear shifted slightly upfield. The additional cross peak reveals the trimeric nature of **8**.

As was the case for the HMQC-TOCSY spectrum of **7** in Figure 2, the length of the mixing period is estimated from the ⁶Li spin—lattice relaxation time of the all-¹²C isotopomer of **8** (34 s at 23 °C). Shorter mixing periods lead (as expected) to a decrease of the intensity of the center cross peak relative to the outer ones. Longer mixing periods lead to an increase in intensity of the center cross peak at the expense of an overall decreased signal-to-noise ratio. Note that concerning the length of the appropriate mixing times $T_{1\rho}$ is the relevant parameter instead of T_1 .

To check the results of Figure 4 against artifacts due to intermolecular exchange (cf. Figure 3), the experiment was repeated at -40 °C instead of +24 °C, with the mixing time reduced to 5 s, according to a shorter T_1 of ⁶Li. The result was identical to that of Figure 4.

Pulse Sequence Variations. Some variants of the pulse sequence shown in Figure 1 have been tested. These were as follows:

(i) ¹H decoupling: Omitting the constant ¹H decoupling leads to a significant loss of sensitivity. Hence, it is trivial to make use of the NOE gain.

(ii) *Mixing sequence:* We have found MLEV-17 to give the best performance when employed as a mixing sequence. A HMQC-NOESY²⁰ experiment on **8** yields somewhat poorer results. HMQC-ROESY²¹ with (pulse – delay)_n spin lock is comparable to HMQC-NOESY with respect to sensitivity.

Figure 5. Series of temperature dependent ¹³C-NMR spectra of the lithiated carbon atom of 8 in toluene- d_8 , 0.25 M.

(iii) Coherence transfer: A $HSQC^{22}$ experiment has been carried out instead of HMQC on **8**. The result is somewhat poorer, presumably due to the higher number of pulses and delays employed in HSQC.

(iv) *BIRD:* The suppression of the main signal of the detected nucleus by use of the BIRD²³ sandwich in advance of the HMQC sequence is routine in ¹H,¹³C experiments. However, in the present ⁶Li,¹³C case no significant improvement was observed. The ⁶Li main peak suppression is sufficient even without BIRD. This may be a consequence of the relatively short relaxation delays employed which lead to a higher degree of saturation of the ⁶Li main peak over its ¹³C satellites (different T_1 ; see below). Moreover, due to the long ⁶Li relaxation times, usage of BIRD unnecessarily increases the duration of the experiment.

(v) *Pulsed Field Gradients:* The ⁶Li main signal suppression should significantly improve when the pulsed field gradient (PFG) variant of HMQC-TOCSY is employed. This has been confirmed in our laboratory and will be reported in future papers.

Alternative Trimer Identification. In the special case of 8, the trimeric structure found by X-ray analysis in toluene- d_8 solution may be nicely demonstrated independently by a series of single-pulse 1D temperature dependent ¹³C-NMR spectra. As is shown in Figure 5, the ¹³C signal of the metalated carbon atom in 8 shows a 1:2:3:2:1 quintet at 0 °C, $J({}^{13}C, {}^{6}Li) = 6.4$ Hz. Under these conditions, 8 is "static" in terms of the NMR time scale and coupling is observed between ¹³C and its two directly neighboring ⁶Li atoms (J = 6.4 Hz). Upon increasing temperature, coalescence will eventually be observed at +12°C. At even higher temperatures, an *intra*molecular exchange process leads to coupling of ¹³C with all present ⁶Li sites, leading to a 1:2:3:4:3:2:1 septet (J = 4.3 Hz). Note that under the hightemperature conditions of Figure 5 no detectable amounts of intermolecular exchange are present: this would lead to scrambling of the ¹³C signal splitting into one single line. The dynamic phenomenon found for 8 is similar to the behavior

^{(20) (}a) Griffey, R. H.; Redfield, A. G. Q. Rev. Biophys. 1987, 19, 51.
(b) Shon, K.; Opella, S. J. J. Magn. Reson. 1989, 82, 193.

^{(21) (}a) Davis, D. G. J. Magn. Reson. **1989**, 84, 417. (b) Kawabata, J.; Fukushi, E.; Mizutani, J. J. Am. Chem. Soc. **1992**, 114, 1115.

^{(22) (}a) Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185.
(b) Brühwiler, D.; Wagner, G. J. Magn. Reson. 1986, 69, 546.

⁽²³⁾ Garbow, J. R.; Weitekamp, D. P.; Pines, A. Chem. Phys. Lett. 1982, 93, 504.

observed for a chemically related compound, [1-methoxy-3-(dimethylamino)phen-2-yl]lithium (9),²⁴ and for *t*-BuLi (10)²⁵ under comparable conditions (i.e., in apolar solvents).

Discussion

In the field of organolithium chemistry, dimers are much more common than trimers. However, both dimers and trimers yield the same ¹³C-NMR multiplicity pattern (quintet in ⁶Li-enriched material). Hence, a simple distinction by ¹³C-NMR is not possible. The ⁶Li{¹³C}-HMQC-TOCSY method now allows an unambiguous discrimination of a cyclic organolithium dimer from a cyclic trimer or an equivalent higher aggregated species. One of the merits of the method is the possibility of employing natural ¹³C abundance. Though not yet tested so far, in cases of favorable ⁷Li spin–lattice relaxation times, natural abundance lithium material (92.6% ⁷Li) might principally be employed as well in analogous ⁷Li{¹³C}-HMQC-TOCSY experiments.

The intermolecular exchange rate of lithium must be well below the inverse length of the TOCSY mixing period. This is a crucial requirement to preclude artificial results. Thus, sufficiently low temperatures must be kept. A further prerequisite is the existence of resolved scalar ¹³C,⁶Li coupling to create multiple quantum coherence.

From a sensitivity point of view, ⁶Li detection in a ⁶Li{ ^{13}C }-HMQC experiment is not meaningful since the magnetic moment of ⁶Li is smaller than that of ¹³C. However, the identification of a trimeric organolithium compound is based on the appearance of an additional cross peak midway between the cross peaks at the ⁶Li chemical shifts of the ¹³C satellites. Hence, it would be worthless to employ an analogous ¹³Cdetected experiment. Here, the crucial additional central cross peak would coincide with the center peak of the ¹³C-observed quintet due to ¹³C,⁶Li coupling in a trimer. Furthermore, the dimer/trimer distinction in the described way is based on relatively good spectral resolution in the f₂ domain (better than ca. 1 Hz). Hence, it is reasonable to detect the ⁶Li nucleus with its small chemical shift range instead of ¹³C which has large spectral dispersion.

Of the mixing sequences, MLEV-17 has turned out to be most efficient. At first glance, this seems surprising since MLEV-17 is an isotropic mixing sequence designed to exploit scalar coupling instead of cross relaxation in the rotating frame. A tentative explanation is as follows: scalar intramolecular ⁶Li,⁶Li couplings in organolithium compounds, though being very small, have been observed by using ⁶Li {⁶Li}-COSY.^{17,26} Due to the very long mixing time employed in Figure 4, MLEV-17 might well lead to homonuclear coherence transfer between ⁶Li nuclei via scalar coupling, in addition to the incoherent NOE transfer. Thus, isotropic mixing and cross relaxation effects may act cumulatively when using MLEV-17.

The chosen lengths of the mixing periods in the ${}^{6}\text{Li}{}^{13}\text{C}$ -HMQC-TOCSY experiments have been estimated from the ${}^{6}\text{Li}$ spin-lattice relaxation times, T_{1} , of the main signals which were found to be 22 s for **7** and 34 s for **8** at 24 °C. However, T_{1} of

¹³C-bound ⁶Li is shorter than T_1 of ¹²C-bound ⁶Li due to efficient dipolar relaxation from ¹³C. Thus, at the same temperature, T_1 of the ¹³C satellite ⁶Li signals in **8** is 26% shorter than T_1 of the main signal. Moreover, during the spin lock period, $T_{1\rho}$ is efficient rather than T_1 .

Principally, the ${}^{6}Li{}^{13}C$ -HMQC-TOCSY experiments of Figures 2 and 4 provide the unambiguous dimer/trimer discrimination. However, we recommend to additionally record the analogous ${}^{6}Li{}^{13}C$ -HMQC experiments. This yields information about the maximum obtainable signal-to-noise ratio and may give an estimation of the magnitude of t_1 noise artifacts.

In principle, a selective 1D ⁶Li{¹³C}-HMQC-TOCSY experiment²⁷ could lead to the desired answer in a much shorter time. This experiment would consist of the pulse sequence shown in Figure 1 with fixed delays instead of the variable t_1 period and the second 90° ¹³C pulse being selective (reminiscent of the SELINCOR^{27c} experiment). The results obtained on 7 and 8 would be identical to the f2 slices of Figures 2 and 4, respectively. However, we strongly recommend against the 1D version since it must be guaranteed that the main ⁶Li resonance line of the all-¹²C isotopomer must be effectively suppressed. This is usually ensured by careful pulse calibration and by phase cycling. Insufficient main signal suppression in a 1D experiment, however, would erroneously identify a genuine dimer as being a trimer. The risk of such erroneous interpretations is tremendously reduced in a 2D experiment: here, the extra cross peak which identifies a trimer (Figure 4) must appear at the f_1 chemical shift of the ¹³C resonance line under consideration. Hence, the cross peak spreading in the f₁ domain of the 2D experiment provides an additional insurance against misinterpretations.

In the special case of **8** the ⁶Li{ 13 C}-HMQC-TOCSY identification of **8** as a trimer is redundant since here the temperature dependent ¹³C-NMR spectra (Figure 5) provide clear evidence for the trimer due to the line multiplicities. Also note that this series of ¹³C-NMR spectra contains only a single set of signals for all carbon atoms of **8** over the whole temperature range. Only the multiplicity of the metalated carbon signal changes. This rules out a dimer/trimer equilibrium. Moreover, cryoscopic measurements in benzene previously identified **8** as a trimer.¹⁸ However, we have deliberately chosen **8** with its known structural features as a test compound for the ⁶Li{¹³C}-HMQC-TOCSY method to demonstrate the performance of the new NMR technique.

It should be emphasized that the application of HMQC-TOCSY for the identification of aggregate sizes is inherently not restricted to the system ⁶Li,¹³C in organolithium compounds. Analogous ¹H,¹³C applications to C_{s^-} or C_2 -symmetric molecules with identical subunits and degenerate protons should work as well. A ¹³C nucleus at a suitable position lifts the degeneracy. Once the ¹³C satellites of an adequate ¹H nucleus are selected by ¹H{¹³C}-HMQC, an additional ¹H,¹H coherent (TOCSY) or incoherent (ROESY, NOESY) magnetization transfer to the proton site at the ¹²C subunit would provide useful information. Related structural identifications have been reported.^{21b,28}

Conclusions

Cyclic dimers of organolithium compounds may be distinguished from trimers or higher aggregates by using the ⁶Li-{¹³C}-HMQC-TOCSY experiment. No specific ¹³C-labeling is required for its successful application. The idea behind the

⁽²⁴⁾ Harder, S.; Ekhart, P. F.; Brandsma, L.; Kanters, J. A.; Duisenberg, A. J. M.; Schleyer, P. v. R. *Organometallics* **1992**, *11*, 2623.

⁽²⁵⁾ Thomas, R. D.; Clarke, M. T.; Jensen, R. M.; Young, T. C. Organometallics **1986**, *5*, 1851.

⁽²⁶⁾ Günther, H.; Moskau, D.; Dujardin, R.; Maercker, A. *Tetrahedron Lett.* **1986**, *27*, 2251.

^{(27) (}a) Kessler, H.; Mronga, S.; Gemmecker, G. Magn. Reson. Chem. **1991**, 29, 527. (b) Crouch, R. C.; Shockor, J. P.; Martin, G. E. Tetrahedron Lett. **1990**, 37, 5273. (c) Berger, S. J. Magn. Reson. **1989**, 81, 561.

⁽²⁸⁾ Ikura, M.; Bax, A.; Clore, G. M.; Gronenborn, A. M. J. Am. Chem. Soc. **1990**, *112*, 9020.

Organolithium Chemistry

method is to lift the degeneracy of lithium sites. In a ¹³C isotopomer of a dimer the two lithium nuclei are equivalent whereas this is not the case for the three lithium nuclei in a trimer: the lithium site remote from ¹³C shows no scalar ⁶Li,¹³C coupling. Hence, its resonance line appears approximately midway between the two lines of the ¹³C-bound ⁶Li nucleus. This feature is exploited for the trimer identification. Provided that ¹³C decoupling is omitted during the acquisition period, dimers reveal a single pair of cross peaks at the ⁶Li chemical shifts of the ¹³C satellites. By contrast, in a trimer the mixing period leads to magnetization transfer from ¹³C-bound ⁶Li nuclei to the remote, ¹²C-bound site. This manifests in a third cross peak at the chemical shift of the 6Li main signal. Potential artifacts (false identification of a genuine dimer as being a trimer) from appreciably high rates of intermolecular lithium exchange are prevented by performing the ⁶Li{¹³C}-HMQC-TOCSY experiment at temperatures well below that of ¹³C quintet scrambling.

Experimental Section

Compounds 7^{17} and 8^{18} were synthesized as described earlier. *n*-Butyllithium isotopically enriched 96% by ⁶Li^{3c} was employed for the metalation of the precursor material. All experiments involving organolithium compounds were conducted under an atmosphere of purified argon.

NMR spectra were recorded on a JEOL Alpha 500 spectrometer (11.7 T; ¹H, 500 MHz). Sample concentrations were 0.25 M for **7** and 0.25 M for **8** (based on the X-ray trimer, i.e., 0.75 M based on the monomeric unit). For the spectra of Figures 2–4, a 5 mm triple resonance probehead was employed: the inner coil is tunable from ¹⁵N to ³¹P, whereas the outer coil is triply tuned to ¹H, ²H, and ¹³C. The ⁶Li{¹³C}-HMQC-TOCSY experiments were performed in an unlocked mode. The 90° pulse widths were as follows: ⁶Li, 19.8 μ s (hard pulse), 78.0 μ s (attenuated during MLEV-17 spin lock); ¹³C, 45.0 μ s. The trim pulse length was 2 ms. Spectral parameters of Figures

2-4 were 512 complex data points in t_2 , zero filled to 2048 points, 16 increments in t_1 , zero filled to 128 points, 64 scans per t_1 increment, spectral widths 400 Hz (f₂, ⁶Li) and 1000 Hz (f₁, ¹³C), acquisition time 1.28 s, relaxation delay 7-10 s, 6Li spin lock field 3.2 kHz, and spin lock power ca. 2 W. Constant low-power ¹H decoupling was applied throughout in order to obtain NOE gain. Referencing of the ¹³C-NMR spectra is based on the solvent (toluene- d_8) signal: δ (C-para) = 125.2 ppm. The scale of the 6Li spectra given in hertz does not reflect the chemical shift. Instead, the ⁶Li main signal has been set to $\delta = 0$. All 2D spectra were recorded in the phase sensitive mode by using the Ruben, States, Haberkorn method²⁹ for quadrature detection in f₁. For the imaginary part of the FID set, phase Φ_2 of the first ¹³C pulse in Figure 1 was decremented by 90° as compared to the real part. Exponential weighting in t_2 (BF 0.2–0.5) and a Gaussian window in t_1 (GF 30.0, BF -1.0) were applied. Spectral resolutions after zero filling were 0.2 Hz in f₂ and 8.0 Hz in f₁. No sample spinning was carried out. The delays, Δ , in the pulse sequence of Figure 1 were set to 1/(2J), with J being the ¹³C,⁶Li coupling constant (5.7 Hz for 7 and 4.3 Hz for 8).

The series of temperature dependent ¹³C-NMR spectra (Figure 5) was recorded on a 5 mm multinuclear probehead with 32k complex data points, zero filled to 64k, spectral width 25 000 Hz, relaxation delay 10 s, 800 scans per individual temperature, 60° pulse angle (=6.0 μ s), and exponential line broadening (BF 1.0).

Acknowledgment. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged. The author thanks Professor Brandsma, Utrecht (Holland), for providing a sample of 1,5-bis(dimethylamino)benzene and JEOL Ltd. (Tokyo) for constructing the triple resonance probehead. Moreover, the author is grateful to one reviewer for providing an annotated copy of the manuscript.

JA954273J

⁽²⁹⁾ States, D. J.; Haberkorn, R. A.; Ruben, D. J. J. Magn. Reson. 1982, 48, 286.